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Abstract

It is shown in this paper that an extended form of Hill|s quadratic yield criterion for anisotropic sheet
metal can be derived from an endochronic theory of plasticity[ The extended form considers the combined
isotropicÐkinematic hardening and the {anomalous behavior| observed in the anisotropic plastic behavior
of sheet metals can be accounted for by the concept of kinematic hardening[

This form of anisotropic endochronic theory can accommodate the usual requirement of normality
between the plastic strain rate and the yield function[ In addition\ the theory leads naturally to the expressions
for back stresses[ This work provides an additional example to show that the form of the intrinsic time is
directly related to the form of the yield function[

It is suggested that the coe.cients of the quadratic yield function be determined from the yield stresses
obtained from a set of tension tests[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

In the case of rolled sheet metal\ when principal axes of anisotropy are the axes of reference\ the
yield function f proposed by Hill "0837# has been widely used[ The yield function f is

1f �"G¦H#s1
x−1Hsxsy¦"F¦H#s1

y¦1Ns1
xy � 0 "0#

where "sx\ sy\ sxy# are the in!plane components of Cauchy stress^ and the out!of!plane components
are considered to be zero[ The coe.cients F\ G\ H and N specify the anisotropy of the metal sheet[
This quadratic form "and its variations such as the one for planar isotropy# has been repeatedly
used in applications[ It is generally satisfactory for predicting the sheet metal behavior for R − 0\
where R is the plastic strain ratio of the transverse to the thickness strain and it speci_es anisotropy[
In the case of R ³ 0\ {anomalous behavior| has been observed by Pearce "0857# and Woodthorpe
and Pearce "0869# for commercially pure aluminum sheet[ In this case\ the yield stress in the
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equibiaxial tension test is higher than that for the uniaxial tension\ and eqn "0# is known not to
predict this behavior[

It was pointed out by Wu et al[ "0887# that the {anomalous behavior| was the consequence of
neglecting the role played by kinematic hardening in most anisotropic theory of sheet metals[
Another cause leading to this doubtful result is by expressing the coe.cients of yield function\ i[e[
F\ G\ H and N in eqn "0#\ in terms of the strain!ratio R[ The latter is equivalent to expressing the
yield function in terms of the ~ow rule[ This\ of course\ is not in accord with the conventional
theory of plasticity[ Wu et al[ "0887# showed that by considering a combined isotropicÐkinematic
hardening behavior\ an extended form of eqn "0#\ i[e[\

"G¦H#"sx−rx#1−1H"sx−rx#"sy−ry#¦"H¦F#"sy−ry#1¦1N"sxy−rxy#1 � f 1 "1#

is useful for predicting the sheet metal behavior for all values of R!ratio[ In "1#\ rx\ ry and rxy specify
the center of the yield surface and therefore\ represent the kinematic hardening^ f represents the
isotropic hardening[ Thus\ the more complex non!quadratic forms of yield function\ such as Hill
"0868\ 0889#\ Gotoh "0866#\ Barlat and Richmond "0876# and Barlat and Lian "0878#\ are not
needed[

In addition to yield function\ eqn "1#\ ~ow rule and hardening rules are required for plasticity[
These are separately proposed rules\ although some of the parameters may be inter!related[ In this
paper\ the endochronic theory is used to derive all equations\ i[e[\ yield function\ ~ow rule and
hardening rules\ by use of a uni_ed approach which is based on irreversible thermodynamics of
internal state variables[

The endochronic theory of plasticity was initially proposed by Valanis "0860\ 0879#[ Further
development of the theory in the case of initially isotropic materials was due to Wu and Yip "0879\
0870#\ Wu and Yang "0872#\ Valanis and Lee "0873#\ Im and Atluri "0876#\ Wu et al[ "0884b# and
others[ The case of deformation induced anisotropy was investigated by Wu and Yeh "0876#\ Wu
and Lu "0884# and Wu et al[ "0884a#[ In these papers\ the distortion of the yield surface was
considered together with the combined isotropicÐkinematic hardening[ It was shown in Wu et al[
"0884a# that the form of the yield function depends closely upon the expressions used to de_ne the
intrinsic time\ which is a time!like parameter used to register the history of deformation in the
endochronic theory[ This idea is further explored in the present paper[ Also\ in the works of Wu
and Yeh "0876#\ Wu and Lu "0884# and Wu et al[ "0884a#\ the plastic strain rate is necessarily
pointing along the radial direction\ emanating from the center of the yield surface\ and it is not
normal to the yield surface after the yield surface has su}ered a distortion[ In this paper\ it is
shown that it is possible to formulate an anisotropic endochronic theory that obeys the normality
rule\ if the yield surface is expressed in a quadratic form given by "1#[ The present paper addresses
the problem of initial anisotropy together with the deformation induced anisotropy[

1[ The endochronic constitutive framework

In the formulation by use of Helmholtz free energy c\ see Valanis "0864#\ the free energy is a
function of the current strain oij and n number of internal state variables qr

ij\ where r � 0\ 1\ [ [ [ \ n[
The internal state variables are phenomenological variables used to specify the current state of
material internal structure and the free energy is
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c �
0
1

s
r

Ar
ijkm"oij−qr

ij#"okm−qr
km# "2#

where Ar
ijkm are constants[

For rolled metal sheet\ let x denote the rolling direction "RD#^ y the transverse direction "TD#^
and z the normal direction "ND#[ The nonzero strain components are ox\ oy\ oxy and oz[ No energy
is stored due to oz[ Thus\ "2# reduces to

c �
0
1

s
r

ðAr"ox−qr
x#1¦Br"oy−qr

y#1¦1Dr"oxy−qr
xy#1¦1Cr"ox−qr

x#"oy−qr
y#Ł "3#

where Ar\ Br\ Cr and Dr are constants[ For a stable material\ any deformation will cause the free
energy density c to increase[ A consideration of uniaxial straining in the x!direction leads to Ar × 9
and a consideration of uniaxial straining in the y!direction leads to Br × 9[ Finally\ pure shear
leads to Dr × 9[ The stress components are

sx �
1c

1ox

� s
r

ðAr"ox−qr
x#¦Cr"oy−qr

y#Ł "4a#

sy �
1c

1oy

� s
r

ðBr"oy−qr
y#¦Cr"ox−qr

x#Ł "4b#

sxy �
1c

1oxy

� s
r

ðDr"oxy−qr
xy#Ł "4c#

and the evolution equations for the internal variables are

1c

1qr
ij

¦br
ijkm

dqr
km

dz
� 9 "r not summed# "5#

where br
ijkm is the dissipation tensor representing the viscosity of the material[ The evolution of the

variables is with respect to a time!like parameter z which is often referred to as the intrinsic time
or the endochronic time[ The intrinsic time is monotonically increasing and is de_ned in terms of
the plastic strain[ The intrinsic time measure for sheet metals will be further discussed in a later
section[ In the rolled sheet metal\ the components of internal variables are "qr

x\ qr
y\ qr

xy# and it is
assumed that there are no coupling e}ects among these components\ so that the dissipation tensor
has the following form

b¼
r � &

br
x 9 9

9 br
y 9

9 9 br
xy
' "6#

Using "3# and "6#\ "5# reduces to

dqr
x

dz
¦Prqr

x¦Urqr
y � Prox¦Uroy "7a#
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dqr
y

dz
¦Qrqr

y¦Vrqr
x � Qroy¦Vrox "7b#

dqr
xy

dz
¦Rrqr

xy � Rroxy "7c#

where

Pr � Ar:br
x\ Ur � Cr:br

x\ Qr � Br:br
y\ Vr � Cr:br

y and Rr � Dr:br
xy "8#

Note that "7a# and "b# are coupled in qr
x and qr

y[ A standard procedure may be used to decouple
the equations[ The resulting equations are

dq¹r
x

dz
¦lr

0q¹
r
x � C	rox¦D	roy "09a#

dq¹r
y

dz
¦lr

1q¹
r
y � E	rox¦F	roy "09b#

where lr
0 and lr

1 are eigenvalues of the matrix $
Pr Ur

Vr Qr%[ Note that since Ur � 9 and Vr � 9\ there

are always two real eigenvalues[ q¹r
x and q¹r

y are related to qr
x and qr

y through the eigenvectors of the
matrix by the following relations

qr
x � Ur"q¹r

x¦q¹r
y# "00a#

qr
y �"−Pr¦lr

0#q¹r
x¦"−Pr¦lr

1#q¹r
y "00b#

and

C	r � "−"Pr#1¦lr
1P

r−PrVr¦lr
0V

r#:Ur"lr
1−lr

0#

D	r � "−PrUr¦lr
1U

r−PrQr¦lr
0Q

r#:Ur"lr
1−lr

0#

E	r � "UrPr¦UrVr#:Ur"lr
1−lr

0#

F	r � ""Ur#1¦UrQr#:Ur"lr
1−lr

0# "01#

Note that "09# are now decoupled in q¹r
x and q¹r

y[ These equations may be integrated with results
substituted into "00# to obtain

qr
x � Ur g

z

9

e−lr
0"z−z?# ðC	rox"z?#¦D	roy"z?#Ł dz?¦Ur g

z

9

e−lr
1"z−z?# ðE	rox"z?#¦F	roy"z?#Ł dz? "02a#
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qr
y �"−Pr¦lr

0# g
z

9

e−lr
0"z−z?# ðC	rox"z?#¦D	roy"z?#Ł dz?

¦"−Pr¦lr
1# g

z

9

e−lr
1"z−z?# ðE	rox"z?#¦F	roy"z?#Ł dz? "02b#

Also\ "7c# may be integrated to yield

qr
xy � Rr g

z

9

e−Rr "z−z?#oxy"z?# dz? "02c#

with qr
x"9# � qr

y"9# � qr
xy"9# � 9[

Substitution of "02# into "4# and by use of integration by parts\ the following expressions are
found

sx � Y0ox"z#¦Y1oy"z#¦s
r 6Mr g

z

9

e−lr
0"z−z?# $C	r dox

dz?
¦D	r doy

dz?% dz?7
¦s

r 6Nr g
z

9

e−lr
1"z−z?# $E	r dox

dz?
¦F	r doy

dz?% dz?7 "03a#

sy � Y2oy"z#¦Y3ox"z#¦s
r 6Kr g

z

9

e−lr
0"z−z?# $C	r dox

dz?
¦D	r doy

dz?% dz?7
¦s

r 6Lr g
z

9

e−lr
1"z−z?# $E	r dox

dz?
¦F	r doy

dz?% dz?7 "03b#

sxy � s
r 6Dr g

z

9

e−Rr "z−z?# doxy

dz?
dz?7 "03c#

where

Y0 � A−s
r

MrC	r−s
r

NrE	r "04a#

Y1 � C−s
r

MrD	r−s
r

NrF	r "04b#

Y2 � B−s
r

KrD	r−s
r

LrF	r "04c#

Y3 � C−s
r

KrC	r−s
r

LrE	r "04d#

A � s
r

Ar\ B � s
r

Br\ C � s
r

Cr "04e#

Mr �
0

lr
0

ðArUr¦Cr"−Pr¦lr
0#Ł "04f#
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Nr �
0

lr
1

ðArUr¦Cr"−Pr¦lr
1#Ł "04g#

Kr �
0

lr
0

ðCrUr¦Br"−Pr¦lr
0#Ł "04h#

Lr �
0

lr
1

ðCrUr¦Br"−Pr¦lr
1#Ł "04i#

Note that all quantities given in "04# are constants[ A special case of "03# is used to derive the
following equations

sx � K−2:1 g
z

9

G"z−z?# $"H¦F#
dox

dz?
¦H

doy

dz?% dz? "05a#

sy � K−2:1 g
z

9

G"z−z?# $"G¦H#
doy

dz?
¦H

dox

dz?% dz? "05b#

sxy � K−2:1 g
z

9

Gxy"z−z?# $
M
N

doxy

dz? % dz? "05c#

where

G"z# � s
r

Gr e−lrz with G"9# � s
r

Gr � 0 "06a#

Gxy"z# � s
r

Gr
xy e−lr

xyz with Gxy"9# � s
r

Gr
xy � 0 "06b#

K � 1
2
"F¦G¦H# and M �"H¦F#"G¦H#−H1 "06c#

Constitutive equations "05# are suitable for use in sheet metals[ These are expressions for the stress
components in terms of the histories of total strain components ox\ oy and oxy[ In the equations\ F\
G\ H\ Gr\ Gr

xy\ lr and lr
xy are constants with r � 0\ [ [ [ \ n[ The derivation of "05# and "06# is given

in Appendix A[
It is now desirable to express the stress in terms of the histories of plastic strain components op

x\
op
y and op

xy so that

sx � K−2:1 g
z

9

r"z−z?# $"H¦F#
dop

x

dz?
¦H

dop
y

dz?% dz? "07a#

sy � K−2:1 g
z

9

r"z−z?# $"G¦H#
dop

y

dz?
¦H

dop
x

dz?% dz? "07b#

sxy � K−2:1 g
z

9

rxy"z−z?# $
M
N

dop
x

dz?% dz? "07c#
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The forms of expressions in the square brackets on the right hand side of "05# and "07# are assumed
to be the same[ These forms are established based on plastic deformation which is further discussed
in Appendix B[ The coe.cients F\ G\ H and N involved are those of yield function "1#[ The kernel
functions r"z# and rxy"z# can be determined from the knowledge of G"z# and Gxy"z# using the
method of Laplace transformation[ Denoting the Laplace transformation of a quantity by an
overhead bar for simplicity\ i[e[\ s¹ � L"s#\ etc[\ "05a\b\c# may be transformed into

s¹ x � K−2:1GÞð"H¦F#po¹x¦Hpo¹yŁ "08a#

s¹ y � K−2:1GÞð"G¦H#po¹y¦Hpo¹xŁ "08b#

s¹ xy �
M

K2:1N
GÞxypo¹xy "08c#

with the initial values ox"9# � oy"9# � oxy"9# � 9[ The parameter of Laplace transformation is
denoted by p[ Similarly\ "07a\b\c# are transformed into

s¹ x � K−2:1r¹ ð"H¦F#po¹p
x¦Hpo¹p

yŁ "19a#

s¹ y � K−2:1r¹ ð"G¦H#po¹p
y¦Hpo¹p

xŁ "19b#

s¹ xy �
M

K2:1N
r¹ xypo¹p

xy "19c#

with o¹p
x"9# � o¹p

y"9# � o¹p
xy"9# � 9[ The plastic strain components in "19# are now expressed by the

di}erence between the total strain and the elastic strain[ Since the expressions in the brackets of
"05# and "07# have been obtained from the consideration of plastic deformation\ the elastic behavior
derived from "05# is not exact and it may be obtained from "05# by setting z : 9[ A further
approximation is made to retain only terms of elastic strain in the direction of the applied load so
that for loading in the x!direction\ the plastic strains are

op
x � ox−oe

x � ox−
sxK

2:1

H¦F
and op

y � oy−oe
y ¼ oy "11a#

and for loading in the y!direction\ the plastic strains are

op
x ¼ ox and op

y � oy−
syK

2:1

G¦H
"11b#

The shear component is

op
xy � oxy−

sxyK
2:1N

M
"11c#

Substitute "11a# into "19a#\ "11b# into "19b# and "11c# into "19c#[ The resulting equations and "08#
are then combined\ respectively\ to yield the following expressions

r¹ �
GÞ

0−pGÞ
"12a#
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r¹ xy �
GÞxy

0−pGÞxy

"12b#

Using "12# and after the inverse Laplace transformation\ it may be shown\ following Valanis
"0879# and Wu and Yang "0872#\ that the kernel functions are

r"z# � d"z#¦r0"z# "13a#

rxy"z# � d"z#¦rxy0"z# "13b#

where d"z# is the Dirac delta function^ and r0"z# and rxy0"z# are given by

r0"z# � s
n−0

r�0

Rr e−arz "14a#

rxy0"z# � s
n−0

r�0

Rr
xy e−axyrz "14b#

where Rr\ Rr
xy\ ar and axyr are positive constants[ Substituting "13# into "07#\ the constitutive

equations for sheet metals may be obtained as

sx � K−2:1 $"H¦F#
dop

x

dz
¦H

dop
y

dz%¦K−2:1 g
z

9

r0"z−z?# $"H¦F#
dop

x

dz?
¦H

dop
y

dz?% dz? "15a#

sy � K−2:1 $"G¦H#
dop

y

dz
¦H

dop
x

dz %¦K−2:1 g
z

9

r0"z−z?# $"G¦H#
dop

y

dz?
¦H

dop
x

dz?% dz? "15b#

and

sxy � K−2:1 $
M
N

doxy

dz %¦K−2:1 g
z

9

rxy0"z−z?# $
M
N

doxy

dz? % dz? "15c#

Equations "15# are the endochronic constitution equations for sheet metals expressed in terms
of the histories of plastic strain[ These equations are valid in the plastic region only[ In order that
the strainÐhardening may be discussed\ the intrinsic time z is further scaled by introducing another
intrinsic time z through the relation

dz �
dz

f"z#
"16#

with initial conditions z � 9 and dz:dz � 0 at z � 9[ In "16#\ f"z# is a scaling function and will be
identi_ed later with isotropic hardening[ Thus\ f"z# may be referred to as the isotropic hardening
function[ When z � 9\ no plastic strain has as yet occurred and at this state z � 9 and f"9# � 0[
For z × 9¦\ eqns "15# apply[

Denoting

rx � K−2:1 g
z

9

r0"z−z?# $"H¦F#
dop

x

dz?
¦H

dop
y

dz?% dz? "17a#
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ry � K−2:1 g
z

9

r0"z−z?# $"G¦H#
dop

y

dz?
¦H

dop
x

dz?% dz? "17b#

rxy � K−2:1 g
z

9

rxy0"z−z?# $
M
N

doxy

dz? % dz? "17c#

eqns "15a# and "15b# may be further written as

$"H¦F#
dop

x

dz
¦H

dop
y

dz%�
sx−rx

K−2:1f
"18a#

$"G¦H#
dop

y

dz
¦H

dop
x

dz %�
sy−ry

K−2:1f
"18b#

which may then be solved for

M
dop

x

dz
�

"G¦H#"sx−rx#

K−2:1f
−

H"sy−ry#

K−2:1f
"29a#

and

M
dop

y

dz
�

"H¦F#"sy−ry#

K−2:1f
−

H"sx−ry#

K−2:1f
"29b#

Also\ "15c# is rewritten as

M
N

dop
xy

dz
�

sxy−rxy

K−2:1f
"29c#

Therefore\ in an anisotropic sheet\ it takes a multiaxial stress state to produce a single plastic strain
component[ Equations "29a\b\c# may be considered as the {~ow rule| using concept of the ~ow
theory of plasticity[ Comparing "29# with "B1#\ it is seen that the plastic strain increments for the
two cases are along the same direction\ i[e[\ the normality condition is satis_ed[ Finally\ the plastic
incompressibility is assumed so that

dop
x¦dop

y¦dop
z � 9 "20#

2[ The de_nition of intrinsic time and the yield function

It was shown by Wu et al[ "0884a# that the form of the yield function in the endochronic theory
depends closely on the de_nition of intrinsic time[ For sheet metals\ it is shown in this section that
the proposed de_nition of intrinsic time leads to Hill|s 0837 quadratic yield criterion[ The intrinsic
time is de_ned using the concept of equivalent plastic strain increment discussed in Appendix B[
Thus\
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dz1 � 6
G¦H

K2 $"H¦F#
dop

x

dz
¦H

dop
y

dz%
1

−
1H

K2 $"H¦F#
dop

x

dz
¦H

dop
y

dz% $"G¦H#
dop

y

dz
¦H

dop
x

dz %
¦

H¦F

K2 $"G¦H#
dop

y

dz
¦H

dop
x

dz %
1

¦
1N

K2 0
M
N

dop
xy

dz 1
1

7 dz1 "21#

Upon the use of "18a#\ "18b# and "29c#\ "21# reduces to

6
"G¦H#

K2 0
sx−rx

K−2:1f1
1

−
1H

K2 0
sx−rx

K−2:1f1 0
sy−ry

K−2:1f1
¦

"H¦F#

K2 0
sy−ry

K−2:1f1
1

¦
1N

K2 0
sxy−rxy

K−2:1f 1
1

−07 dz1 � 9 "22#

Thus\ either dz � 9 and the quantity in the bracket " # � 9\ or dz � 9 and the bracket " # � 9[ The
case of dz � 9 corresponds to the elastic behavior and the case of dz � 9 corresponds to the plastic
behavior[ In the latter case\ after simpli_cation\ one obtains

"G¦H#"sx−rx#1−1H"sx−rx#"sy−ry#¦"H¦F#"sy−ry#1¦1N"sxy−rxy#1 � f 1 "23#

This is exactly the same as "1# and is an extension of the yield criterion for sheet metals proposed
by Hill in 0837[ This equation also identi_es f as the isotropic hardening function\ because it
speci_es the size of the yield surface[ It also shows that rx\ ry and rxy specify the center of the yield
surface and therefore\ represent the kinematic hardening[ These are also known as the components
of the back stress[

The coe.cients F\ G\ H and N are determined from experiments[ Several tests have been used
in the literature for this purpose[ They range from tests that determine yield stresses to those that
determine the width to thickness plastic strain ratio R[ The latter tests do not have the same degree
of accuracy\ however and they involve assumptions and other factors[ Thus\ the values of the
coe.cients determined entirely from the yield!stress tests are di}erent than those determined from
the plastic strain ratio tests or those determined from the mixture of the two types of tests[ This\
of course\ is not acceptable\ because F\ G\ H and N are material constants and for a given metal
sheet\ their values are _xed[

Of the two types of tests\ the yield!stress tests are the simpler tests[ Although the yield has several
de_nitions\ i[e[\ the proportional limit\ proof strain\ or backward extrapolation\ as long as the
de_nition is chosen\ a rather well!de_ned yield stress can be determined from the experiments and
the result is rather repeatable although subjected to some degree of expected experimental scatter[
On the other hand\ there are many factors of uncertainty associated with the plastic strain ratio
test[ Experimentally\ the measured value in the thickness strain does not have the same degree of
accuracy as in the width and longitudinal strains in a sheet metal due to its thinness[ Therefore\ an
experimentally determined ratio between the width and thickness strain is not of high degree of
accuracy[ Experiments show that the R!ratio varies with strain[ According to Mellor "0871# for
titanium 004\ the R!ratio varies greatly with the increasing plastic strain if it is de_ned as the ratio
of the width to thickness strain[ The ratio varies the most at the transition zone from the elastic to
plastic strain[ But if the R!ratio is de_ned as the ratio of plastic strain increments\ then it almost
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remains constant over the whole plastic strain range tested\ up to a strain of 02)[ However\ the
experimental results are not su.ciently accurate to allow computation of the ratio of plastic strain
increments closer to the initial yielding zone[ The curve for R rises slightly with decreasing strain\
but an extrapolation of this curve to zero strain is not recommended[ Experiments were also
conducted by Lin and Ding "0884# for as received and cold!rolled aluminum sheets using cruciform
plate specimen[ A similar conclusion was also obtained regarding the R!ratio at small plastic strain[
The authors stated that R could not be reasonably determined when the plastic strain is in_nitesimal
due to the quite severe scattering of the plastic strain increments[ Finally\ it should be pointed out
that the method of determining the coe.cients F\ G\ H and N by use of the R!ratios does not
conform to the traditional method of plasticity[ Traditionally\ the yield function is determined
from the yield stresses and not from the ~ow rule[ Since R is determined by the ~ow rule\ the
determination of the yield function in terms of R would have the same e}ect as in terms of the
~ow rule[ Due to the aforementioned reasons\ it is believed that the coe.cients of the yield function
should be determined from tests that determine the yield!stresses and will be subsequently discussed[

These coe.cients may be determined at the condition of initial yielding[ Thus\ rx � ry � rxy � 9
and f � 0 and "23# reduces to

"G¦H#s1
x−1Hsxsy¦"H¦F#s1

y¦1Ns1
xy � 0 "24#

Note that x denotes the rolling direction and y the transverse direction[ In a tension test along the
x!direction\ the stresses are sx � 9\ sy � sxy � 9 and "24# reduces to

G¦H �"sY
x #−1 "25a#

Similarly\ a tension test along the y!direction leads to

H¦F �"sY
y #−1 "25b#

Yielding under equibiaxial tension occurs when sx � sy � sY
B [ In this case\ "24# reduces to

G¦F �"sY
B#−1 "25c#

Due to the usual assumption that hydrostatic stress does not a}ect yielding\ sY
B is also the

compressive yield stress perpendicular to the sheet[ The through!thickness compression test was
carried out by Naruse et al[ "0881#[ Cylindrical specimens were prepared from discs of each sheet
material glued together with an epoxy adhesive[ The specimens were tested in compression using
Te~on sheet and graphite grease for lubrication between the specimen ends and platen of the test
machine[ Factors of uncertainty arose from the epoxy adhesive\ the Te~on sheet and graphite
grease[ Therefore\ the equibiaxial tension test is preferred over the aforementioned compression
test[ Equations "25a\b\c# can be solved for G\ F and H to yield

1G �
0

"sY
x #1

−
0

"sY
y #1

¦
0

"sY
B#1

"26a#

1F �
0

"sY
y #1

−
0

"sY
x #1

¦
0

"sY
B#1

"26b#
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1H �
0

"sY
x #1

¦
0

"sY
y #1

−
0

"sY
B#1

"26c#

Finally\ the coe.cient N may be determined from the tension test of a specimen cut at 34> angle
with the x!direction[ The tensile yield stress for this specimen is denoted by s34 and
sx � sy � sxy � 0

1
s34[ Using this condition\ it may be found from eqn "24# that

1N � 0
s34

1 1
−1

−"sY
B#−1 "26d#

Since s34 is easily determined experimentally\ N is thus determined from "26d#[ The shear yield
stress sY

xy is determined in pure shear with material element parallel to the orthotropic axes[ It may
be shown from "24# that

sY
xy �

0

z1N
"27#

However\ in sheet metals\ pure shear is di.cult to realize experimentally[ Also\ the simple shear
test is sometimes used in the literature to determine N[ The stress state of this test is never simple\
however and the test can at best be used as an approximation[ It has thus been shown that the
coe.cients of the yield function can be determined by a set of tension tests[ Well!controlled tension
tests are simple to perform[ The equibiaxial test can be carried out by use of cruciform specimens
as in Makinde et al[ "0881# and Lin and Ding "0884#[

In summary\ using this formulation\ the initial material anisotropy is speci_ed by material
constants "F\ G\ H\ N#[ The strain hardening is speci_ed by an isotropic hardening function f
and the kernel functions r"z# and rxy"z# which characterize kinematic hardening[ The kinematic
hardening describes the deformation induced anisotropy[ The constitutive equations are given in
"15# with the back stress expressed by "17#[ From "15#\ the yield function and ~ow rule are derived
and given in "23# and "29#\ respectively[ Finally\ the intrinsic time is de_ned by "21#[

3[ Material parameters of the endochronic theory

The constitutive equations of the theory are "15a\b\c# with the intrinsic time de_ned by "21#[ In
these equations\ F\ G\ H\ N\ K and M are known as described in the previous section[ The
determination of parameters associated with kernel functions r0"z# and rxy0"z# need to be discussed[
In the _rst place\ the yield stresses will be identi_ed by setting z � 9¦ in "15#[ In the case of uniaxial
stress sx loaded from the initial state\ "sy−ry# is zero so that\ from "18b#\

"G¦H#
dop

y

dz
¦H

dop
x

dz
� 9 "28#

This equation is then substituted into "21# to _nd\ for the uniaxial stress in the x!direction\ that
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dz1 �
G¦H

K2 $"H¦F#
dop

y

dz
¦H

dop
x

dz %
1

dz1 "39#

or

b"H¦F#
dop

y

dz
¦H

dop
x

dz b�
K2:1

"G¦H#0:1
"30#

Therefore\ when z � 9¦\ the isotropic hardening function fz�9 � 0\ and by the use of "30# and
"25a#\ "15a# reduces to

sx � sY
x "31a#

Similarly\ in the case of uniaxial stress sy\ when z � 9¦\ "15b# reduces to

sy � sY
y "31b#

and in the case of pure shear\ when z � 9¦\ "15c# reduces to

sxy � sY
xy "31c#

The parameters of the model can be determined by considering the plane strain extension
condition\ where dop

x � 9 but dop
y � 9 and dop

xy � 9[ In this case\ "15a# reduces to

sx � K−2:1 $"H¦F#
dop

x

dz %¦K−2:1 g
z

9

r0"z−z?# $"H¦F#
dop

x

dz?% dz? "31#

The general form of kernel function r0"z# is given in "14#[ It has been found in previous applications
that only one exponential term will capture the essential feature of metal behavior[ The following
form is\ therefore\ used in the subsequent discussion]

r0"z# � R0 e−az "32#

Using "21#\ the intrinsic time for the plane strain extension is

dz � 2""H¦F#MK−2#0:1 dop
x "33#

so that

dop
x

dz
� 20

K2

"H¦F#M1
0:1

"34#

where the {¦| sign corresponds to loading and {−| corresponds to unloading[ If the isotropic
strain hardening function is given by the linear form as

dz

dz
� f � 0¦bz "35#

where b is a parameter that describes isotropic hardening\ then\ in the case of loading\ "31# reduces
to the following expression by use of "32#\ "34# and "35#]
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sx � 0
H¦F

M 1
0:1

6"0¦bz#¦
R0

"n¦0#b $"0¦bz#−
0

"0¦bz#n%7 "36#

This equation describes the stressÐplastic strain curve[ In the equation\

n � a:b "37#

The yield point sy
pl=o=x of this curve may be found by setting z : 9[ Thus\

sy
pl=o=x � 0

H¦F
M 1

0:1

"38#

On the other hand\ the asymptote of the curve is obtained by setting z : � in "36# and is given
by

sx � 0
H¦F

M 1
0:1

00¦
R0

"n¦0#b1"0¦bz# "49#

The intercept s9
x of the asymptote with the stress axis is obtained by setting z � 9 in "49#[ Thus\

s9
x � 0

H¦F
M 1

0:1

00¦
R0

"n¦0#b1 "40#

Finally\ the slope of the asymptote "49#\ is\ by use of "38# and "40#

ET �
dsx

dop
x

�
dsx

dz

ds

dop
x

�""H¦F#MK−2#0:1bs9
x "41#

Equation "36# may be simpli_ed by observing that\ from "33# and "41# and in the case of loading\
the following relations hold

bz � 0
ET

s9
x 1 op

x � mop
x with m � 0

ET

s9
x 1 "42#

Therefore\ by use of "38#\ "40# and "42#\ "36# may be rewritten as

sx � sy
pl=o=x 6"0¦mop

x#¦0
s9

x

sy
pl=o=x

−01 $"0¦mop
x#−

0

"0¦mop
x#n%7 "43#

where

isotropic hardening � sy
pl=o=x"0¦mop

x#

kinematic hardening � rx �"s9
x−sy

pl=o=x# $"0¦mop
x#−

0

"0¦mop
x#n% "44#

If an experimental stressÐplastic strain curve is available for the plane strain extension case\ then
sy

pl=o=x\ s9
x and ET can be experimentally determined and m is known from "42#[ An optimization

procedure may be used to determine parameter n by requiring the calculated curve to pass through
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certain experimental points on the graph[ The optimization procedure for the endochronic theory
was discussed by Jao et al[ "0880#[

Plane strain extension is not easily accomplished experimentally[ Some published works are
Wagoner and Wang "0868#\ Wagoner "0879# and Taha et al[ "0884#[ In Table 0 of Wagoner "0879#\
the saturation model gives the experimental e}ective stress vs e}ective strain relation[ This relation
is transformed into an axial stress vs axial strain relation by use of the equations in Appendix C
of that paper[ The experimental curve for extension along the rolling direction for 1925!T3
aluminum alloy is plotted in Fig[ 0[ In the data conversion\ the plastic anisotropy parameter r is
taken as 9[6 according to Fig[ 2 of that paper[ Figure 0 shows the theoretical plane strain stressÐ
strain curve by use of "43#[ The evolution of back stress is also shown and it has been calculated
by use of "44#[ The following parameters were used in the calculation] sy

pl=o=x � 159 MPa\
s9

x � 259 MPa\ ET � 537 MPa\ m � 0[7 and n � 01[
Most equibiaxial tests found in the literature are stress!controlled[ In that case\ sx � sy � s and

op
x � op

y[ On the other hand\ in a strain!controlled test\ it is possible to perform an experiment so
that op

x � op
y � op\ but sx � sy[ The latter test is suitable to the present theory[ However\ no

experimental result has been found in the literature[ In the strain!controlled equibiaxial extension
test\ the intrinsic time is from "21# given by

Fig[ 0[ StressÐplastic strain curve for plane strain extension[
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dz � 2""3H¦F¦G#MK−2#0:1 dop
x "45#

Using the kernel function "32#\ "15a# reduces to

sx � sy
x=bi 6"0¦m?op#¦0

s9
x=bi

sy
x=bi

−01 $"0¦m?op#−
0

"0¦m?op#n%7 "46#

where the yield stress is

sy
x=bi �

1H¦F

M0:1"3H¦F¦G#0:1
"47#

the stress intercept s9
x=bi and the slope of the asymptote ET

bi are related by

ET
bi �""3H¦F¦G#MK−2#0:1bs9

x=bi "48#

and furthermore\

bz � m?op with m? � 0
ET

bi

s9
x=bi1 "59#

eqn "46# is the stressÐstrain relation in the x!direction for equibiaxial extension[ It is then easy to
show from "15b# that

sy � 0
1H¦G
1H¦F1 sx "50#

and the yield stress in the y!direction is

sy
y=bi �

1H¦G

M0:1"3H¦F¦G#0:1
"51#

Note that the expressions of "47# and "51# satisfy the yield criterion "24#[

4[ The plastic strain ratio

The plastic strain ratio R is determined by use of the ~ow rule[ The ratio Ra for a tension
specimen cut at an angle a with respect to the x!direction is de_ned by

Ra �
dop

y?

dop
z?

"52#

where x? is along the longitudinal direction of the specimen^ y? is the transverse direction^ and
z? � z[ Note that x? is making an angle a with the x!direction[ By use of coordinate transformation\
"52# is transformed into
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Ra � −
dop

x sin1 a¦dop
y cos1 a−1 dop

xy sin a cos a

dop
x¦dop

y

"53#

The ~ow rule given by "29a\b\c# is now substituted into "53# to obtain

Ra � −"ð"G¦H#sx−HsyŁ sin1 a¦ð"H¦F#sy−HsxŁ cos1 a

−1Nsxy sin a cos a#:"ð"G¦H#sx−HsyŁ¦ð"H¦F#sy−HsxŁ# "54#

Note that the initial yielding is being considered so that rx � ry � rxy � 9 and f � 0[ For a tensile
specimen at an angle a to the rolling direction\

sx � s cos1 a\ sy � s sin1 a and sxy � s sin a cos a "55#

where s is the tensile stress applied to the specimen[ Then\ "54# reduces to

Ra � −"ð"G¦H#s cos1 a−Hs sin1 aŁ sin1 a¦ð"H¦F#s sin1 a−Hs cos1 aŁ cos1 a

−1Ns sin1 a cos1 a#:"Gs cos1 a¦Fs sin1 a# "56#

Substituting a � 9\ 89 and 34>\ respectively\ into "56#\ the following expressions are obtained

R9 �
H
G

"57a#

R89 �
H
F

"57b#

R34 �
0
1 0

1N
G¦F

−01 "57c#

For the as!received condition\ rx � ry � rxy � 9 and the tensile yield stress sa at any orientation
a may be derived based on the yield function given by "24#[ If the tension specimen is cut at an
angle a\ the stress components are given by

sx � sa cos1 a\ sy � sa sin1 a and sxy � sa sin a cos a "58#

By the substitution of "58# and "26#\ the yield function "24# reduces then to

s1
a $

0

"sY
x #1

cos3 a¦0
0

"sY
xy#1

−
0

"sY
x #1

−
0

"sY
y #1

¦
0

"sY
B#11 cos1 a sin1 a¦

0

"sY
y #1

sin3 a%� 0 "69#

To each stress state on the yield surface\ denoted by "sx\ sy\ sxy#\ there corresponds a uniaxial stress
state\ denoted by "sa\ a#\ also on the yield surface[ By _xing a\ the uniaxial yield stress is determined
from "69#[ Some special cases are

s9 � sY
x \ s89 � sY

y and s34 �
1

X
0

"sY
xy#1

¦
0

"sY
B#1

"60#

for a � 9\ 89 and 34>\ respectively[ Equation "69# may be plotted to obtain the distribution of sa
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with respect to a[ Note that "60# are given in terms of the yield stresses and they can be shown to
be the same as those of Hill "0889#[

5[ Conclusion

The quadratic anisotropic plane!stress yield criterion and its associated normality rule of the
plastic strain rate have been derived based on an endochronic theory of plasticity[ The range of
validity of the sheet metal plasticity with quadratic anisotropic yield function is greatly extended
by incorporation of kinematic hardening into the model and it can account for the {anomalous
behavior|[

It has been proposed that the coe.cients of the anisotropic quadratic yield function be deter!
mined by the yield stresses using a set of tension tests[ In addition\ it has been shown that the
expression of intrinsic time in the endochronic theory is closely related to the form of the yield
function[

Appendix A

It is shown in this Appendix that "05# and "06# describe a special case of "03#[ When
Y0 � Y1 � Y2 � Y3 � 9 and lr

0 � lr
1 � lr\ "03a# and "03b# may be written as

sx � s
r $g

z

9

"C	rMr¦E	rNr# e−lr "z−z?# dox

dz?
dz?%¦s

r $g
z

9

"D	rMr¦F	rNr# e−lr "z−z?# doy

dz?
dz?% "A0#

sy � s
r $g

z

9

"C	rKr¦E	rLr# e−lr "z−z?# dox

dz?
dz?%¦s

r $g
z

9

"D	rKr¦F	rLr# e−lr "z−z?# doy

dz?
dz?% "A1#

On the other hand\ "05# and "06# are combined to yield

sx � K−2:1 g
z

9

s
r

Gr e−lr "z−z?# $"H¦F#
dox

dz?
¦H

doy

dz?%dz? "A2#

sy � K−2:1 g
z

9

s
r

Gr e−lr "z−z?# $"G¦H#
doy

dz?
¦H

dox

dz?% dz? "A3#

Conditions will no be established which will reduce "A0# and "A1# to "A2# and "A3#[ By
considering special cases and equating the two sets of equations\ the following relations are
obtained

C	rMr¦E	rNr � K−2:1Gr"H¦F# "A4#

D	rMr¦F	rNr � K−2:1GrH "A5#

C	rKr¦E	rLr � K−2:1GrH "A6#
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D	rKr¦F	rLr � K−2:1Gr"G¦H# "A7#

A condition that makes "A5# equal to "A6# is

D	rMr¦F	rNr � C	rKr¦E	rLr "A8#

The coe.cient Gr of the kernel function G"z# are then de_ned from "A5# by

Gr �
D	rMr¦F	rNr

s
r

"D	rMr¦F	rNr#
with s

r

Gr � 0 "A09#

Then\ from "A4#Ð"A6#\

F � K2:1 s
r

ð"C	r−D	r#Mr¦"E	r−F	r#NrŁ

G � K2:1 s
r

ð"D	r−C	r#Kr¦"F	r−E	r#LrŁ

H � K2:1 s
r

ðD	rMr¦F	rNrŁ "A00#

Similarly\ by comparing "03c# with "05c#\ it may be found that

Gxy"z# �
ND

K2:1

s
r

Dr e−Rrz

D
�

0
D

s
r

Dr e−Rrz "A01#

where

N �
K2:1

D
with D � s

r

Dr "A02#

Appendix B

In the classical theory of plasticity\ the yield function is from "1#

1f �"G¦H#s1
x−1Hsxsy¦"F¦H#s1

y−1Ns1
xy "B0#

Using the normality condition\ the ~ow rule is

dop
x � dl

1f

1sx

� dlð"G¦H#sx−HsyŁ

dop
y � dl

1f

1sy

� dlð−Hsx¦"H¦F#syŁ
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dop
xy � dl

1f

1sxy

� dlNsxy "B1#

where dl is a parameter[ Equations "B1# may be solved for stress components to yield

sx �
"H¦F# dop

x¦H dop
y

dlM

sy �
Hop

x¦"G¦H# dop
y

dlM

sxy �
0

dlN
dop

xy "B2#

By the substitution of "B2# into "B0#\ one obtains

"G¦H#

"dlM#1
ð"H¦F# dop

x¦H dop
yŁ1−

1H

"dlM#1
ð"H¦F# dop

x¦H dop
yŁ ð"G¦H# dop

y¦H dop
xŁ

¦
"H¦F#

"dlM#1
ð"G¦H# dop

y¦H dop
xŁ1¦

1N

"dlM#1 0
M
N

dop
xy1

1

� 1f "B3#

It appears natural then to de_ne an equivalent plastic strain increment by

do¹ � 6
"G¦H#

K2
ð"H¦F# dop

x¦H dop
yŁ1−

1H

K2
ð"H¦F# dop

x¦H dop
yŁ ð"G¦H# dop

y¦H dop
xŁ

¦
"H¦F#

K2
ð"G¦H# dop

y¦H dop
xŁ1¦

1N

K2 0
M
N

dop
xy1

1

7
0:1

"B4#

and to de_ne the equivalent stress se by

se � 0
1f

K 1
0:1

� 0
2
11

0:1

6
"G¦H#s1

x−1Hsxsy¦"F¦H#s1
y¦1Ns1

xy

F¦G¦H 7
0:1

"B5#

so that

do¹ � dl 0
M
K1 se "B6#

This de_nition of equivalent stress is the same as that of Hill "0838#[ For isotropic materials\ "B5#
and "B4# reduce\ respectively\ upon setting N � 2F � 2G � 2H\ to

se � s1
x−sxsy¦s1

y¦2s1
xy "B7#

and

do¹ �
0
1

"ð1 dop
x¦dop

yŁ1−ð1 dop
x¦dop

yŁ ð1 dop
y¦dop

xŁ¦ð1 dop
y¦dop

xŁ1¦2"dop
xy#1#0:1
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�
z2
1

""dop
x#1¦"dop

y#1¦dop
x dop

y¦"dop
xy#1#0:1 "B8#
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